edexcel

Mark Scheme (Results)
Summer 2014

Pearson Edexcel GCE in Statistics S4R (6686/01R)

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications come from Pearson, the world's leading learning company. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information, please visit our website at www.edexcel.com.

Our website subject pages hold useful resources, support material and live feeds from our subject advisors giving you access to a portal of information. If you have any subject specific questions about this specification that require the help of a subject specialist, you may find our Ask The Expert email service helpful.
www.edexcel.com/contactus

Pearson: helping people progress, everywhere

Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

Summer 2014
Publications Code UA040132
All the material in this publication is copyright
© Pearson Education Ltd 2014

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively. Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

EDEXCEL GCE MATHEMATICS

General Instructions for Marking

1. The total number of marks for the paper is 75 .
2. The Edexcel Mathematics mark schemes use the following types of marks:

- M marks: method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- B marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod - benefit of doubt
- ft - follow through
- the symbol $\sqrt{ }$ will be used for correct ft
- cao - correct answer only
- cso - correct solution only. There must be no errors in this part of the question to obtain this mark
- isw - ignore subsequent working
- awrt - answers which round to
- SC: special case
- oe - or equivalent (and appropriate)
- dep - dependent
- indep - independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper
- \square The second mark is dependent on gaining the first mark

4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
6. If a candidate makes more than one attempt at any question:

- If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
- If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.

Ignore wrong working or incorrect statements following a correct answer.

Question	Scheme	Marks
1. (a)	[New - standard =] d: 7, 4, -5, 18, -12, 18, 11, 13.	M1
	$\bar{d}=6.75$	M1
	$s_{d}^{2}=\frac{1172-8 \times 6.75^{2}}{7}=115.3571 \ldots \text { or } s_{d}=10.7404 \ldots$	M1
	$\mathrm{H}_{0}: \mu_{d}=0 \quad \mathrm{H}_{1}: \mu_{d}>0$	B1
	$t_{7}=\frac{6.75}{s_{d}}=1.7775 \ldots \quad \text { or } \frac{c}{s_{d} /}=1.895 \therefore \mathrm{CR} \quad c>\text { awrt } 7.2$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$
	$t_{7}(5 \%)$ one tail critical value is $\underline{\mathbf{1 . 8 9 5}}$ (or prob. $=0.05935 \ldots$)	B1
	Not significant. There is insufficient evidence that the new medicine is better or the new medicine is not recommended.	A1ft
(b)	Need the differences between levels triggering coughing to be normally distributed	B1 (1)
		(9 marks)
	Notes	
(a)	$1^{\text {st }} \mathrm{M} 1$ for attempting the $d \mathrm{~s}$	
	$2^{\text {nd }}$ M1 for attempting \bar{d}	
	$3^{\text {rd }}$ M1 for attempting s_{d} or $s_{d}{ }^{2}$	
	$1^{\text {st }}$ B1 for both hypotheses correct in terms of μ or μ_{d}	
	$4^{\text {th }}$ M1 for attempting the correct test statistic $\frac{6.75}{s_{d} / \sqrt{8}}$ or $p=$ awrt 0.06 or $\frac{c}{10.7 / \sqrt{8}}$	t value
	1st A1 1.78 or awrt 0.06 or awrt 7.2 $2^{\text {nd }}$ B1 1.895 or awrt 0.06	
(b)	$2^{\text {nd }}$ A1ft for a correct comment in context based on their test statistic and their cv. B1 for a comment that mentions "differences" and "normal" distribution	

Question	Scheme	Marks
5. (a)(i)	$\bar{x}=\left(\frac{880}{15}=\right) 58 . \dot{6}$ or awrt 58.7	B1
	$s_{x}^{2}=\left(\frac{54892-15 \times 58 . \dot{6}^{2}}{14}=\right) 233.238 \ldots$	B1
	$t_{14}(0.025) \mathrm{cv}=2.145$	B1
	95% CI for μ is $58 . \dot{6} \pm 2.145 \times \sqrt{\frac{233.238 \ldots . .}{15}}$	M1
	$=(50.209 . . ., 67.124 \ldots)=$ awrt (50.2, 67.1)	A1, A1
(ii)	$\chi_{14}{ }^{2}(0.025)=5.629, \quad \chi_{14}{ }^{2}(0.975)=26.119$	B1, B1
	95% CI for σ^{2} is given by: $\quad 5.629<\frac{14 s_{x}{ }^{2}}{\sigma^{2}}<26.119$	M1
	S $=(125.017 \ldots, 580.0911 \ldots)$	A1
	So 95% CI for σ is $\quad=(11.1811 \ldots, 24.0850 \ldots)=$ awrt (11.2, 24.1)	A1 (11)
(b)	Require $\mathrm{P}(S>d) \leq 0.80$ i.e. $\mathrm{P}\left(Z>\frac{d-\mu}{\sigma}\right) \leq 0.80$	
	From tables ± 0.8416	B1
	So require: $\frac{d-\mu}{\sigma}>-0.8416$	M1
	i.e. $d>\mu-0.8416 \sigma$	A1
	Worst case is when $\mu=\mu_{\text {max }}$ and $\sigma=\sigma_{\text {min }}$ So $d>67.1-0.8416 \times 11.2(=57.674 \ldots) \quad$ so they should set a pass mark of 58	M1 A1
	So $d>67.1-0.8416 \times 11.2(-57.674 \ldots)$ so they should set a pass mark of 50	(16 marks)
	Notes	
(a)	$1^{\text {st }} \text { M1 } \quad \text { their } \bar{x}, \pm t \text { value } \times \frac{\text { 'their s' }}{\sqrt{15}}$	
	$\begin{array}{\|ll} 1^{\text {st }} \mathrm{A} 1 & \text { for awrt } 50.2 \\ 2^{\text {nd }} \mathrm{A} 1 & \text { for awrt } 67.1 \end{array}$	
	$\begin{aligned} & 2^{\text {nd }} \text { M1 for use of their values in } \chi^{2}<\frac{14 s^{2}}{\sigma^{2}}<\chi^{2} \\ & 3^{\text {rd }} \text { A1 } \\ & \text { for awrt } 125 \text { or } 580 \\ & 4^{\text {th }} \text { A1 } \\ & \text { for awrt } 11.2 \text { and } 24.1 \end{aligned}$	
(b)	$1^{\text {st }} \mathrm{M} 1$ for forming a correct expression in d, μ, σ and their z value $2^{\text {nd }}$ M1 for using their top value from CI for μ and lowest value for CI for σ	

Question	Scheme	Marks
6. (a)	$\begin{aligned} & \mathrm{E}(X)=\int_{0}^{a} x \frac{2}{a^{2}} x \mathrm{~d} x=\left[\frac{2}{a^{2}} \frac{x^{3}}{3}\right]_{0}^{a}=\frac{2 a}{3} \\ & \mathrm{E}\left(X^{2}\right)=\int_{0}^{a} x^{2} \frac{2}{a^{2}} x \mathrm{~d} x=\left[\frac{2}{a^{2}} \frac{x^{4}}{4}\right]_{0}^{a}=\frac{a^{2}}{2} \text { so } \sigma^{2}=\frac{a^{2}}{2}-\frac{4 a^{2}}{9}=\frac{a^{2}}{\underline{18}} \end{aligned}$ So $\mathrm{E}(\bar{X})=\mu=\frac{2 a}{3}$ and $\operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}=\frac{a^{2}}{18 n}$	B1cso M1 A1 A1cso (4)
(b)	$p=\frac{3}{2} \text { and } \operatorname{Var}(S)=\frac{9}{4} \operatorname{Var}(\bar{X})=\frac{a^{2}}{\underline{8 n}}$	B1, B1ft (2)
(c)	$\mathrm{E}(M) \rightarrow a$ as $n \rightarrow \infty$, and $\operatorname{Var}(M) \rightarrow 0$ as $n \rightarrow \infty$ So M is a consistent estimator of a	B1, B1 $\begin{equation*} \mathrm{dB} 1 \tag{3} \end{equation*}$
(d)	$q=\frac{2 n+1}{\underline{2 n}}, \quad \operatorname{Var}(T)=\frac{(2 n+1)^{2}}{4 n^{x}} \times \frac{\not 2}{(n+1)(2 n+1)^{2}} a^{2},=\frac{a^{2}}{\underline{4 n(n+1)}}$	B1, M1, A1 (3)
(e)	$\frac{a^{2}}{4 n(n+1)}<\frac{a^{2}}{8 n} \Leftrightarrow 2<n+1 \quad \Leftrightarrow \quad 1<n \quad \text { So } \operatorname{Var}(T)<\operatorname{Var}(S)$ So (since both are unbiased) choose T since it has the lower variance	M1 A1 A1cso. (3)
(f)	$m=7.8$ so using t gives estimate of $\frac{11}{10} \times 7.8,=8.58 \quad[\mathrm{NB} \bar{x}=6$ and s gives 9$]$	M1, A1ft (2)
(g)	Using $\operatorname{Var}(T)=\frac{a^{2}}{120}$; so standard error is $\frac{8.58}{\sqrt{120}}$, = awrt $\underline{\mathbf{0} .78}$ [NB s gives $\frac{a}{\sqrt{40}}=1.42$]	M1;A1 (2) (19 marks)
	Notes	
(a)	$1^{\text {st }} \mathrm{B} 1$ for some working to establish μ. Allow median of triangle for example. $1^{\text {st }}$ M1 for correct method for σ^{2}	
(b)	$2^{\text {nd }} \mathrm{B} 1 \mathrm{ft} \mathrm{ft}$ their value of p	
(c)	$3^{\text {rd }} \mathrm{dB} 1$ dependent on both of first 2 Bs in (c) for concluding that M is consistent	
(d)	M1 for correct use of $\operatorname{Var}(T)=q^{2} \operatorname{Var}(M)$ for their q.	
(e)	M1 for attempt to compare $\operatorname{Var}(T)$ and $\operatorname{Var}(S)$	
	$1^{\text {st }}$ A1 for clearly establishing that $\operatorname{Var}(T)<\operatorname{Var}(S)$	
	$2^{\text {nd }} \mathrm{A} 1$ for choosing T and stating variance is smaller	
	SC M0 A0 B1 for T because it has a smaller variance	
(f)	M1 for using their estimator chosen in (e)	
(g)	M1 for using their Variance formula to calculate std. error. subst in $n=4$ and their (f)	

Pearson Education Limited. Registered company number 872828 with its registered office at Edinburgh Gate, Harlow, Essex CM20 2J E

